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The electron-gas problem is investigated by means of a self-consistent Green’s-function formalism with
the aim of developing practical approximation schemes for metallic densities. The work is based on the
Dyson equation for the single-particle propagator G[U] as a functional of an external potential U. The
self-energy functional Z[U], appearing in the Dyson equation, is evaluated by perturbation theory in
terms of the exact G[U], thereby leading to a self-consistent problem. A hierarchy of approximations is
generated by summing successively larger sets of graphs for Z[U]. The Dyson equation is expanded in a
functional Taylor series in U and yields a nonlinear integral equation for the U=0 propagator as well as
linear integral equations for the U=0 higher-order Green’s functions, with kernels dependent on §Z/5U.
In applications of the theory, the emphasis is on calculating the longitudinal dielectric function e in terms
of the contracted four-point Green’s function. The linear integral equation for the latter is solved after
making a low-momentum dominance approximation to the kernel. The result is a general, but approximate,
closed-form expression for e which can be used for different choices of =. The following five approximations
for ¢, based on different approximations for 2, are presented: the Hartree-Fock, random-phase, generalized
random-phase, second-stage random-phase, and low-high-density approximations. The last approximation
is designed to work well at the two extremes of the density spectrum and, hopefully, also at metallic densities.
The long-wavelength plasmon dispersion relations obtained from two different versions of the generalized
random-phase approximation for e agree closely with the results of Kanazawa ef al. and of Singwi et al.
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I. INTRODUCTION

Considerable insight into the physics of a metal can
be obtained by studying the so-called electron-gas
model of the metal. In this model the zero-temperature
conduction electrons are assumed to interact via
Coulomb forces only and to move in a uniform, neu-
tralizing background of ions; magnetic and ion-lattice
effects are thereby neglected. The properties of the
electron gas depend critically on the electron density
n=N/Q, where N is the number of electrons in a given
volume ©. Instead of #, it is customary to use the di-
mensionless parameter r,=7,/ao, where ro= ($wn)=1/3
and ao=1/me? is the Bohr radius.! At very high electron
densities (7,1, the weak-coupling limit) the properties
of the electron gas are well accounted for in the random-
phase approximation (RPA).2 At low densities (7, >1,
the strong-coupling limit), on the other hand, the elec-
tron gas supposedly solidifies into a Wigner crystal.? In
this case the model can be solved by means of the
strong-coupling approximation in which the electrons
are allowed to execute small vibrations about their
fixed lattice sites.* In the metallic density regime
(re~2 to 6) neither of the two approximation schemes
is satisfactory; here one faces a difficult intermediate-
coupling problem in which the average kinetic and
potential energies per electron are comparable. The
standard method of getting answers in this regime is to
interpolate between the high- and the low-density
values of physical quantities of interest.®5 Clearly, this
method cannot be considered fundamental, and a “first-
principles” approach would be desirable. In particular,
the interpolation procedure cannot answer the interest-
ing and important question about the existence of a
phase transition in the electron gas which is conjectured
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to occur at 7,~5.5 A first-principles treatment of the
electron-gas problem at metallic densities is of great
interest not only because of its applicability to real
metals but also from a more general standpoint, mainly
because one expects that any insight gained in the
electron-gas problem would be useful in treating
other many-body systems with intermediate coupling
strengths.

The electron-gas problem would in principle be solved
if one had determined all the electron Green’s functions.
In practice, it is neither feasible nor necessary to know
all of them, since they contain much more information
than one could ever use. At present, the single-particle
and the two-particle Green’s functions suffice to inter-
pret the experimental data, although perhaps in a not too
distant future the solid-state experimental techniques
will be refined to the point where it will be important
to have some theoretical information on higher electron
correlations deducible from the higher-order Green’s
functions. For this reason, it seems worthwhile to
formulate a theory which is sufficiently general to allow
one to calculate efficiently the higher-order Green’s
functions, if and when necessary.”

Despite many attempts, there has been little progress
made in devising approximation schemes, valid at
metallic densities, for calculating Green’s functions or
other related quantities. An exception is the recent
work of Singwi ef al.3 which, however, is restricted to
computing the longitudinal dielectric function e (with
apparently quite good results). As discussed in the
last paragraph, one would like to have a more general
theory available which could be used to calculate the
full two-particle Green’s function (of which the di-
electric function is a special case) and also the higher-
order Green’s functions. It is the purpose of this paper
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to attempt the formulation of such a theory. No numeri-
cal calculations will be reported here, since our prin-
cipal aim in this paper is to erect a theoretical frame-
work for such calculations on the basis of a sequence
of progressively more accurate approximations for de-
termining the Green’s functions. Inasmuch as most of
the work on the electron-gas problem reported in the
literature has been aimed toward producing a physically
acceptable dielectric function ¢, we shall also emphasize
the calculation of € in Sec. III in order to be able to
compare with the work of other authors. Nevertheless,
our formulation is completely general, as will be evident
from what follows.

The basic ideas of our approach are as follows. The
central object of study is the two-point Green’s func-
tion or the single-particle propagator G as a func-
tional of a weak external potential U. Once G has been
determined, the higher-order Green’s functions may
in principle be obtained from it by functional differen-
tiation with respect to U. The single-particle propaga-
tor G[ U] satisfies the Dyson equation

GLUT'=K+U—-2[U], (1.1)

where K is the kinetic-energy term and Z is the self-
energy functional. If one calculates £ by perturbation
theory in terms of the exact propagator G[ U], thereby
ignoring all electron self-energy corrections, then (1.1)
effectively becomes a self-consistent nonlinear equation
for GLU]. A hierarchy of approximations for G[ U] is
generated by choosing progressively larger sets of graphs
contributing to Z.

Once a particular approximation for = has been de-
cided upon, all the Green’s functions can be obtained
from the solution of the approximate version of (1.1).
In practice, it is convenient to expand (1.1) in a func-
tional Taylor series in U. This leads to an infinite set
of integral equations for the U=0 Green’s functions.
With the exception of the equation for the two-point
Green’s function, all the integral equations are linear
and contain kernels which depend only on the lower-
order Green’s functions. Thus the integral equations
may be solved one by one starting with the equation
for the two-point Green’s function.

The contents of the paper are as follows. In Sec. II
we discuss the Green’s functions for an electron-gas
system subject to an external potential and present the
momentum-space Feynman rules for computing them.
We then sketch the derivation of integral equations
satisfied by the various Green’s functions and show how
the dielectric function can be computed in terms of the
four-point Green’s function. In Sec. III we apply the
results of Sec. IT to compute the dielectric function
€(p) in various approximations of increasing com-
plexity. We first briefly review the Hartree-Fock and
the random-phase approximations in order to indicate
how they fit into our hierarchy of approximations. We
then proceed to discuss the generalized RPA (GRPA)
and, upon making further approximations, exhibit two
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closed expressions for e(p) which contain exchange
corrections to the usual RPA result. The long-wave-
length plasmon dispersion relations derived from each
of the two expressions for e(p) are compared with those
of other authors and are found to agree closely. Section
III is concluded with a discussion of the second-stage
random-phase and the high-low-density approxima-
tions, the latter being specifically designed to work
well at the high and the low ends of the density spec-
trum and, hopefully, also at the intermediate densities.
A general discussion of our results is given in Sec. IV.
The U= 0 Hartree-Fock version of the Dyson equation
for the single-particle propagator is investigated in the
Appendix.

II. BASIC FORMALISM

A. Lagrangian Density

In the presence of an external spin-dependent po-
tential, the electron gas is described by the Lagrangian
density

£(x)=¢a(x)TK::"l’a(x)+f dix’ 'pa(x)TUaa’(x: x,)¢a'(x’)
=3 &% Ya () War (&) TV (06— 2" War (2 Wa().
(2.1)

Here Y. (x) and ¢ (x)" are, respectively, the destruction
and creation operators of an electron of spin =4 at
the space-time point x= (x, X),

K.=1i(3/9%0)+ (2m) V244,
V(x)=0d(x0)e*/| x|,

w is the chemical potential, and U is the external po-
tential. In (2.1) and elsewhere repeated spin indices
are to be summed. The external potential introduces
space-time inhomogeneities into the electron-gas system,
so that the four-momentum is not conserved. This in-
convenience is more than offset by the ease with which
various quantities may be computed once the single-
particle propagator is known as a functional of U.

(2.2)
(2.3)

B. Green’s Functions

In this subsection we define the general n-particle
Green’s function and collect a number of results which
will be used in the rest of the paper. The functional
approach to many-body problems used here has been
developed principally by Martin and Schwinger® some
ten years ago on the basis of the variational (or func-
tional) derivative techniques of Schwinger.l Subse-
quently, this formalism has been elaborated upon by
Baym and Kadanoff!! and others.’? Most of the results
we need can be found in the literature just referred to;
fcr this reason, we shall content ourselves with the
barest outline of their derivation.

Let | 0) be the exact ground state of an N-electron
system subject to the external potential U. The general
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n-particle or 2un-point Green’s function is defined as
Gaovaniroe B (H1% * Xn; Y1 *Yn | U)=(—in

X <0 | T‘pal(xl) °e "/’an(xn)\l’ﬂn(yn)T' ‘ "pﬁl(yl)f , O>;

(2.4)

where 7 is the usual time-ordering operator. The
Green’s functions may be calculated by functional
differentiation of a certain Green’s functional® F[ U],
according to the formula

Garevanifree8a (%17 * % Y1022y | U)

= { Daypy (%191) * * * Dex,p, (2ay:)FLU L} /FLU], (2.5)
where the operator
satisfics Dog(%, ¥)=5/6Usa(y, x) (2.6)
Deg(%, y) Uwp (o, y') = Saprbargd (x—y' )6 (2’ —y).  (2.7)

In the usual perturbation expansion of the Green’s
function defined by (2.5), the denominator F[U]
serves to cancel out the contributions of disconnected
graphs, so that G, as defined, is given in terms of con-
nected graphs only.

It is somewhat simpler to compute the single-particle
propagator G, than the functional F, since the various
perturbation terms for G are not weighted by the
factors #~! (n is the order of perturbation) as are those
for F. For this reason, we shall direct our efforts toward
calculating G,;s. Next, we discuss how the higher-order
Green’s functions may be expressed in terms of Gg.p
and its functional derivatives.

Omitting space-time and functional arguments, we
find from (2.5) that

Gamz; B1B2 = Gal;ﬂxGaz:ﬁ2+Ga1a2;ﬂlﬁz; (2-8)
where

éalﬂ2;ﬁlﬁ2E Doys,Gari1 (2.9)

Equation (2.8) is a slight generalization of Eq. (5-11)
of Kadanoff and Baym" in that our four-point Green’s
function Gajayps, has all arguments distinct in con-
trast to their G»(12, 12%; U) having the second and the
fourth arguments the same (apart from an infinitesi-
mal). Expressions for higher-order Green’s functions
can be derived in analogy with (2.8). We quote here

pa><v'u' va> <P'a' F'a'> <"°
. q8 a8 q8' a8 q8'
Pa pa'
>--< = -Vip-08gSag 8+p'-4-0"
® a8
pa

} = iGoq;50: alU)
a8

Fi1c. 1. Feynman rules for an electron-gas system with an
external potential Ugg(x, ¥). The usual factor of —1 is to be
supplied for each closed electron loop, and integrations over
internal four-momenta are to be performed.
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@=D+(D+B+@+---

F16. 2. Graphs contributing to the electron self-energy
functional 2.
only the expression for the six-point function,

Galazaazﬂlﬁzﬂaz Ga1;61Ga2:ﬁzGaa;ﬂz

+Ga1:BlGawa;3263+Gaz;ﬁzGa3ax;ﬂ361
+Ga3;ﬂ3Gamz:Bxﬂz+Ga1azaz:ﬁ1ﬁ2ﬂz’ ( 2. 10)

where the last term is a double functional derivative of
Gax;ﬂl-

C. Single-Particle Propagator

It is convenient to go over to the momentum space,
using

V)= [ exp(=ip-aalp), etc,  (2.11)

where p-x= poxo—p-x and

/= (2#)_4/(1“1)‘
4
We also write

Dag(p, )= [ d*« [ d*y exp[—i(p-x—q-y)1Das(x, ¥),

(2.12)

(2.13)
Uas(p, ¢)=f d*« [ d*y exp[+i(p-2—q-y)]Uas(x, 3),
(2.14)
so that
DGB(P’ Q)Uuﬂ'ﬁ'(fp” ql)=6aﬂ’(?~q’)6ﬂa'(q_17,)’ (215)
where
dap (D) =08ap(2m)*6* (p)=6asd (p). (2.16)

The Feynman rules for the perturbation theory
based on the Lagrangian density (2.1) are given in
Fig. 1 with

Go(p; ¢ | UY'=K(p)s(p—q)+U(p, ¢), (2.17)
K(p)=po—8&o(p)+n, (2.18)
&(p)=p*/2m, (2.19)
V(p)=4re?/p* if pO0;

=0 if p=o0. (2.20)

The exact single-particle propagator G is given as the
solution of the Dyson equation

G(p;q| U)'=Go(p; | U)=2(p;¢| U). (2.21)

Here Z is the usual proper self-energy functional. In
computing ¥ only sieleton graphs ol the type shown
in Fig. 2 will be retained in which each electron line
contributes iG.* No electron self-energy corrections
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should then be used, since they are already accounted
for when one does perturbation theory in terms of the
exact propagator G. With an appropriate approximate
expression for £ as a functional of G, (2.21) becomes a
self-consistent equation determining G.

D. Integral Equations for Green’s Functions

We now use (2.21) to derive equations satisfied by
the various Green’s functions in the absence of an ex-
ternal potential. In the limit U—0 the electron-gas
system becomes spatially and temporally homogeneous
and is described by a spin-independent Hamiltonian.
Hence we expect to have

Gap(3 91 0)=G(p)oas(p—9),
and similarly for the other two-point functions. Taking
U=01in (2.21), we obtain

G(p*=K(»)—2(p),

which is the usual form of the Dyson equation without
external potentials. Next, taking the U derivative of
(2.21) at U=0, using

(2.22)

(2.23)

DG™'=- G™{(DG)G™, (2.24)
and simplifying, we find
Gaao9 (P15 99') = G(P)G(@) [ Zaaipr (P25 99")
—bap (p— ¢ Vors(p'—q)], (2.25)

where S=D2=62/5U follows the definition (2.9) of
G, and where the lack of the argument U signifies U=0.
It is worth remarking that the §-function term in (2.25)
arises from the {7 term in the definition (2.17) of G
From the symbolic identities

S=63/6U= (62/5G) (5G/sU) = (52 /6G)G

we see that 2 is linear in G, so that (2.25) is a linear
(integral) equation for G.

By a procedure used above one can derive linear in-
tegral equations for the higher-order Green’s functions.
One of the attractive features of our scheme, we believe,
is that the kernel of the integral equation for the n-par-
ticle Green’s function involves only the lower-order
(1 to n—1) Green’s functions. This statement is illus-
trated by the integral equation (2.25) for the two-
particle Green’s function. It is evident from (2.25) and
(2.26) that its kernel involves only G(p), which has
presumably been determined by solving (2.23).

(2.26)

E. Dielectric Function

Let us now establish the relation between the longi-
tudinal dielectric function € and the four-point Green’s
function Gaar;gsr. It is convenient to introduce the time-
ordered polarizaticn function

Pi(p)=—i [ dx exp(ip-2)(0| To(x)p(0) | 0),

where

(2.27)

p(x) =va(x+n) Wa(x) (2.28)
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is the density operator with 5= (5, 0), n—0%". Sub-
stituting (2.28) into (2.27) and using (2.11) and (2.4),
we find

Pi(p)=i [ explilg+s) n Gasas(pHg, 750, 5).

qrs
(2.29)
The dielectric function is defined by
e(p) =14V (p)P.(p), (2.30)

where P,(p) is the relarded commutalor polarization
function, whose definition involves a commutator of
two density operators. The precise definition of P, is of
no concern to us. It suffices to note here the relation'®

Pt(P)=Pr(P) (1’0>0); (2~31)

which enables us to compute e(p) (for po>0) once
Pi(p) has been found from (2.29),

e(p)=14+V(P)P(p)  (£>0).

As one sees from (2.29), in order to calculate the
polarization function P, it is sufficient to determine
the contracted four-point Green’s function

(2.32)

1 . ! 7’ ’
g(P;q)EEf ,eXP(zq 0)Gagias (PP’ 9¢), (2.33)

»’q

in terms of which

Pi(p)=2i / expligm)g(p+g;q).  (2.34)
Using (2.8) and (2.22) in (2.33) and (2.34), we find
Pi(p)=—in8(p)+2i / explig-ma(p+a;q),  (235)

where 7 is defined in analogy with g. In (2.35) #» is the
electron density arising from the normalization in-

tegral

—Zifexp(iq-n)G(q)=n. (2.36)
q

One notes that the §(p)-proportional term in (2.35),
due to the direct noninteraction part of Gag;«s, does not
contribute to (), since it is multiplied by V(p), which
vanishes for p=0. This term will henceforth be omitted
from P, without further comment. In the sequel we shall
not bother to keep track of factors such as exp(ip+n),
replacing them everywhere by unity and remembering
to restore them appropriately when ambiguities arise
as to the path of integration in the complex energy-
parameter. plane.

Our next task is to derive an integral equation for the
contracted Green’s function ¥. Rather than doing this
directly, we shall first derive an integral equation satis-
fied by the full four-point Green’s function, and shall
then obtain a related equation for g. In this manner,
we shall be able to obtain a clear physical interpreta-
tion of the kernel appearing in the integral equation
for g. Our starting point is (2.25), which we rewrite,
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using (2.8), as follows:
Gaar;58 (P15 99" ) =G (2)G(P')
X[bas(p—q)0arsr (9" — ') — b (p—¢" Vs (p'—) ]
—8(p+9"—q—q)G(P)G(P')Taw:pe (P9"; 99 )G(9)G(T)-
(2.37)
Here T, the vertex part, is related to 2 by
8(p+2" —q— ¢ )Taeisp (P95 99")
= =G (') Zawsor (P15 90')G (¢ ). (2.38)

From (2.37) we see that I' inherits the well-known anti-
symmetry properties of Gaer;s7, namely,

(2.39)

with the associated four-momentum changes not ex-
plicitly shown. Equation (2.37) is illustrated in Fig.
3(a). To relate I' to G we use the detailed form of (2.26),

i«m';ﬂﬁ’(?j”; 99’)
=/ Zas(p; g | U)
v 6Gy5(r5s | U)
We abbreviate the functional derivative by writing

5Ea;t3(p; ‘Zl U)
8G;5(r; s|U)

Gaw';p5'= — Gaa';8= — Gor 88’

Gw'ﬂﬁ’("?’; 5q').

U=0

(2.40)

=8(p+s—q—7) a5, (P55 g7).

U=0

(241)

The reason for the particular momentum & function is
explained graphically in Fig. 4. Substituting (2.41)
and (2.8) into (2.40), letting r—7-+p, and then using
(2.37), we find

2~:vwz':ﬁﬂ’ (29';99")

= —G(P’)G(q’)6(P+P’—q—q’)[laa';aa'(Pﬁ’; 99')
+flaa:ﬂv(P9+’$ 9P+’)G(P+")G(9+’)P7a’;5ﬂ’

><<p+rp';q+rq'>]. (2.42)

Substituting this expression for 2 into (2.38) and sim-
plifying, we find

Taori9 (P75 99" ) = ILae; 65 (PP'; 90")
+_/Iaﬁ:ﬁv(P9+’§ qp+7)G(p+7)G(g+7)Tryar o8

X(p+rp's gtrg). (2.43)

This is just the Bethe-Salpeter equation for I' with I
the irreducible kernel, as illustrated in Fig. 3(b). Note
that the interaction term in (2.43) involves the ex-
change of a particle-hole pair. The two intermediate
lines are therefore inequivalent. For this reason, there
is no factor of } in front of the integral, as there would
be in the case of two equivalent intermediate lines.’®
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Fi1c. 3. (a) Graphical form of
Eq. (2.37) with four-momenta
suppressed. The long straight
lines represent the exact single-
particle propagators G(p), G(p'),

&,E; ]‘ @ o o 909
BB B i’ p’/\p #E}
(a) B B

etc. The short stubs on G are for

o' clarity only. (b) Graphical form
of the Bethe-Salpeter equation
(2.43).

Equation (2.43) will not be needed in this paper. It
has been derived here for the sake of completeness in
order to indicate how one might go about determining
the full two-particle Green’s function and also in order
to exhibit the role of I as an irreducible kernel.

We are now ready to derive an integral equation for
g. From (2.33), (2.37), and (2.8) we get

155 0)=~G)G6W 14 [ 66

xraa;aﬁ(pp’;qq')a(p+p’—q—q')], (2.44)

while from (2.38), (2.40), and (2.41) it follows that
the second term in brackets above is just

1 ~
- / IaB;a'y(pq_*-r; QP+7)G7ﬁ;8ﬁ(P+'P'§ 9+’q’)
2 plalr

(2.45)
Now Is,ay is proportional to &y,
Lasiar (pg+7; qp+7)=L(p;q | 7)62.  (2.46)
Putting (2.44)-(2.46) together, we find the desired
integral equation for g,

E(p; )+G(p)G(g)
=G(0G) [ Lp3g| NE(pHr; g7, (247)

The kernel L of this integral equation is just the spin-
contracted irreducible kernel I of the Bethe-Salpeter
equation, according to (2.46).

Letting p—p—+q in (2.47), multiplying it by 2, and
integrating over g, we obtain, using (2.35),

P(p)=x(p)+2i

X [ GOANC@L(p+g5 0| NEp+a-+rs+0);

(2.48)
here

x(p)==2 [ Gr+a)G().  (249)
q

Thus P, can be calculated from (2.48) once (2.47) has

been solved for %. In general, it is a rather arduous task

to find solutions to (2.47). For this reason it is worth-

while to look at a simple approximation which obviates



4450

p
8
8Gir; s|u)

q

8
2 smau e
u=0 at g

P S
4+ ---
q r

F16. 4. Functional derivative of X with respect to G at U=0.
A typical term in §2/8G is shown in which the internal electron
line contributes 7G(q’; p’| U). The four-point graphs on the
bottom are proportional to §(p+s—g—7) by the four-momentum
conservation which is valid when U=0.

the necessity of solving (2.47). We first rewrite (2.48) as
Pu(p)=x(p)+2i / M(p+r; NE(p+r;7), (250)

where

M(p+r;7)= / G(p+0)G(@L(p+a;9]7—g). (2.51)

Let us suppose that under appropriate circumstances
the » dependence of M may be ignored,

M(p+r;r)~M(p;0)=M(p).

Then the second term in (2.50) is proportional to P,
and hence (2.48) can immediately be solved:

P(p)~=x(p)/[1—M(p)]. (2.53)

Had we included the —i#%(p) term in the definition
(2.35) of P,, we would have found precisely the same
term in (2.53), without any renormalization. The ap-
proximate formula (2.53) for P, will be used in Sec. III.
The approximation (2.52), henceforth referred to as the
low-momentum dominance approximation (LMDA),
is expected to be substantially better than the alterna-
tive, more naive approximation of neglecting the 7
dependence of the kernel L in (2.48). The reason for this
expectation is that M is an integrated quantity whose
r dependence is likely to be smoother than that of L.
Using (2.53) and (2.32), we obtain the {ollowing expres-
sion for the dielectric function in the LMDA:

V(p)x(p)
(D)+V(o)x(p)

The LMDA will be used several times in the sequel in
a slightly different context from (2.52). It is therefore
fitting to devote a few lines to an elucidation of the
nature of this approximation. Consider the typical ex-
pression

(2.52)

(2.54)

(Pt — —

A= [ VOGANGEANX (9475 g+7), (255)

where X is a function satisfying a linear integral equa-
tion and VGG is the “kernel.” Obviously, it is nonsense
to neglect the r dependence of the kernel in (2.55),
since V() is very strongly dependent on | r|. A pos-
sible application of LMDA consists in neglecting the
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r dependence of X in (2.55),
A=X(p;q) [ VNG(p4NGg ). (256)

Clearly, (2.56) will be a good approximation if X is
weakly dependent on its four-vector arguments and
especially if the large » contributions to (2.55) are
unimportant due to special properties of the kernel.
To see how this may happen, let us suppose that it is
permissible to neglect the 7o dependence of X and to
approximate G by Go= K1, Then (2.56) is easily shown
to be proportional to

[arV(r)
no(p+7r)—no(qg+7)
po—qo—8o(p+7)+8(g+7)+1(po—go)d

X(p+r; g+1),
(2.57)

where 7 is the Fermi-Dirac distribution function. The
above numerator vanishes when |p+r| and | q-+r|
exceed the Fermi momentum. Thus the | r | integral is
cut off at large | r | and the LMDA (2.56) is justified.
It is important to note that this happy state of affairs
is contingent upon the fact that the kernel VGG in
(2.55) represents an interactive propagation of an
electron-hole pair. In the case of two electrons, say,
one would typically obtain the factor G(p+7)G(g—7);
this would lead, for large | r [, to

Cbot-go—8o(p+7)—8o(g+7)+2u+i(potqo)d I i~r?

instead of the fraction is the integrand of (2.57). Now
there is no cutoff for large | r |. However, we have

[ & V(ryr2X~]drr2X,

so that the large-| r | contributions of X to the integral
are suppressed by the factor 7—2. This may or may not be
enough to make LMDA a useful approximation.

The above arguments remain essentially the same if
the exact G is used in (2.55) instead of Gy, the major
change being that the spectral function of G is no longer
a ¢ function as in the case of G,. The effect of an 7, de-
pendence of X is somewhat more difficult to assess,
although the physical basis for the arguments (electron-
hole pair versus two electrons) is expected to remain
valid. In any case, known 7, singularities of X may be
subtracted out (and treated exactly) and the LMDA
applied to the remaining, more slowly varying function.
If the 7, singularities of X are not known, one still has
the recourse to the more difficult self-consistent sub-
traction of singularities. We shall have no occasion to
use these more sophisticated versions of LMDA in
this paper.

III. APPLICATIONS

In this section we apply the theory developed so far
to derive equations for determining approximate two-
point and contracted four-point Green’s functions and
then, after making additional approximations, to com-



2 SELF-CONSISTENT GREEN’S-FUNCTION APPROACH: .-

pute the dielectric function e(p). The different ap-
proximations will be labeled according to the form of
e(p) they lead to. We shall first derive the well-known
Hartree-Fock and the random-phase approximations
for e(p) in order to illustrate how our formalism works
in a familiar context. Then we shall proceed to higher
approximations, the last of which will be specifically
tailored to the metallic density regime.

A. Hartree-Fock Approximation

The simplest approximation to X is zero,

0. (3.1)
Then (2.23) gives
G(p)~Go(p)
=K(p)'=[po—e(p)+utiped I, (3.2)

where iped (6>0 and infinitesimal) takes care of the
boundary conditions in the usual way. By (2.41) L=0,
so that (2.48) yields

Pi(p)>~x0(p), (3.3)
where, according to (2.49) and (3.2),
d’q n0(q) —no(p+9)
=2 3.4
x(p) / (27)* pot8o(q) —8o(p+q) +ipod 54
no(q) =0(pr—| q ), (3.5)
pr= (2mu)?=Fermi momentum. (3.6)

Of course, xo is just the familiar density-density response
function (if po>0) for a noninteracting electron gas.
Substituting (3.3) into (2.32), we obtain

e(P)=[1+V(p)x0(p) I

=enra(p), (3.7)
the Hartree-Fock expression for the dielectric function.?
B. RPA

The Hartree approximation to =
pYaS) 7N (3.8)

amounts to keeping the contribution of the graph (a) in
Fig. 3,

Sur(pi | V)= =iV (p=0) [ uGptr; 47| U).

(3.9)

In the limit U—0, G in (3.9) is proportional to 8(p—gq),
so that Zya vanishes. Thus G(p)=~G,(p), where G,
is given by (3.2). The first derivative of Zu, is, how-
ever, nonzero at U=0 and yields, according to (2.41),
the 7-independent kernel

Lua(p;q| 7)=—2iV(p—q). (3.10)

With this form of L, (2.53) is an exact consequence of

~

O=t-O+ [

/

(@ (b
OO =4O O ++-D+ }o + :j:)
(c)

0= D+ ]
C) (e)

Fic. 5. First- and second-order graphs contributing to =
and their decomposition: (a) Hartree, (b) exchange, (c) Hartree-
Fock with electron self-energy correction, (d) polarization, and
(e) exchange polarization.

(2.48). From (2.51) and (3.10) we find

Mua(p) =V (p)x0(p)- (3.11)

Substituting (3.11) into (2.54) (remembering to let

X—Xo, since GG, in the present approximation), we
find®

e(P)=1=TV(p)x0(p)

EGRPA(p). (312)

Thus the Hartree approximation for Z[ U] leads to the
RPA dielectric function. This of course is expected in
view of the known equivalence of the random-phase
and the time-dependent (due to the external potential
U, in the present instance) Hartree approximations.?!
Similarly, the Hartree-Fock approximation for 2 is
expected to yield a dielectric function in the GRPA,
as we next discuss.

C. GRPA

Figures 5(a) and 5(b) lead to the Hartree-Fock ap-
proximation for 2

Zua(p; 4| U) = =iV (p=q) [ 6G(ptr; gtr| U)

+i [ VOIG(ptr g7 | V). (3.13)

The second, exchange, term in (3.13) survives the
U—0 limit and, by (2.23), yields the following non-
linear integral equation for the single-particle propaga-
tor:

-1
60 = k0)=i [vineen | @
Instead of (3.10) we now get an r-dependent kernel,

Lura(p; q| 7)=—2V(p—q)+iV(r). (3.15)

Substituting (3.15) into (2.48) and rearranging, we
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find
P ura(p) =erpa(p)™

X [0+ [ etrs o N} 6o

where egpa is given by (3.12) with xo—x [since now G
is given by the solution of (3.14)] and

K0 9)=i [ VOIG(+nGlg+n) =E(g ). (317)

We emphasize that (3.16) is exact within the present
approximation for Z. Let us now explore some ap-
proximate solutions for G and P..

Consider first (3.14). In the weak-coupling limit (the
high-density case, 7,<1), it is reasonable to iterate
(3.14) once to get

GO~ K(p)+i [ VK (ptn
=Gura(p),

the usual Hartree-Fock expression for the propagator.
A more general, noniterative way of solving (3.14)
is discussed in the Appendix. Let us assume that we are
in possession of a solution to (3.14) and proceed to
investigate the consequences of (3.16).

As discussed in Sec. IT E, in order to determine P,
we should first solve the integral equation (2.47) with
the HF kernel (3.15) and then use (3.16) to calculate
P,. To avoid this difficult task, an approximation
scheme was devised in the last section, leading to (2.53)
and (2.54), which in the present case amounts to ne-
glecting the » dependence of £ in (3.16) . This approxima-
tion scheme (LMDA) will be discussed later in this
subsection. First, we wish to explore an alternative ap-
proximation which allows us to make contact with
previous work in the literature on exchange corrections
to the plasma dispersion relation in the high-density
case.”% Let us suppose that the £&-proportional exchange
term in (3.16) is small compared to the direct Coulomb
term. In that case one may use perturbation theory to
compute g. Working to first order in the exchange po-
tential, we need ¥ to zero order,

Z(ptr; r)~Zrea(p+r;7)
=—G(p+r)G(r)/erea(p), (3.19)

as determined from (2.47) by using (3.10) for L. Sub-
stituting (3.19) into (3.16), we find

x(p)+n(p)/erra(p)

erpa (p)
where the double prime indicates the approximation
(3.19), and

n(p)==2i [ Gp+nNGOEp+r;r). (321)

(3.18)

P urar (p)~ ,  (3.20)
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The dielectric function corresponding to (3.20) is

erpa ()
14V (p)n(p)/erpa(p)

e(p)>

=egrpar (P). (3.22)

We refer to (3.22) as the dielectric function in the
GRPA with the additional approximation (3.19).

In order to investigate the properties of ‘erpa‘’, one
must know the function 5(p). Substituting (3.17) into
(3.21) and doing the goro integrations, we find

n(p) =—2f [d%/(2m)*]

X[ L&/ (2m)* IV (g—n) X (p, ) X (p,7), (3.23)
where the function
X (p, 9= (dgo/2mi) G(p+9)G(g)
_ n(g) —n(p+9)
" e st tim Y
also appears in the definition (2.49) of x:
x(p) =2[ [d*%/(2r)*]1X (p, 9). (3.25)
In (3.24) we have written
n(q) = [ (dgo/2mi)G(q), (3.26)
8(0)=ea(e)+i [ V()Glotn)
=8(q) — J [/ (2m) IV (r—g)n(r). (3.27)

A complete evaluation of (3.23) by analytical methods
does not seem feasible nor is necessary for our purposes.
We consider here only the limiting case | p |—0. More-
over, we restrict our attention to the high-density
regime, in which case it is reasonable to approximate
n(p) in (3.26) by the Fermi-Dirac distribution func-
tion (3.5) and &(p) by its free-electron form &y(p)
=p?/2m.

Subject to the above approximations, we now show
that in the limit p=| p |0 (3.22) leads to a plasmon
dispersion relation incorporating the well-known ex-
change corrections. For the high-density case we are
considering, it is appropriate to expand (3.22) in
powers of 7; (or ¢?). Now egpa=0(1) and V, n=0(7),
so that to order 7,?> the expansion of (3.22) reads*

earpa~erpa (1— V7/erpa)
=1=V(xo+n)-

One finds that —3(xo+7) in this expression is precisely
the term in parentheses of Eq. (2.13) of Kanazawa
et al.,? if one makes some changes of variables and if
one neglects the self-energy terms Z® in the denomi-
nator of these authors’ expression for xo, as they do
later in their paper. The result of setting the right-hand

(3.28)
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side of (3.28) equal to zero is the dispersion relation
b’ =wpP 415 (pr*/m?) (1—mwp?/4pr*) p*+0 (),

(3.29)
where
(3.30)

The exchange contribution is the second term in the
parentheses of (3.29) with the value —0.05537,.%

The validity of GRPA” is restricted to low values
of p=|p|. This may be seen as follows. Consider
(2.52) with L— Lgra and p—p+gq,

E(pt+g9=—G(p+9G(g)
x{t+i [V V-0 Tr+rn). (530

The derivation of (3.22) was based on the assumption
that the exchange term in (3.31) may be treated as
small. Apparently, this is not true for large p and fixed
g, since then 2V (p)<<V(r—gq) except when r becomes
sufficiently large. But large 7 values presumably make
only a small contribution to the integral in (3.31) in
view of the asymptotic behavior

2(ptr; 1) ~—G(p+1)G(r)r

for fixed p and large r. While the above argument is
admittedly crude, it nevertheless suggests that the
exchange term dominates the high p behavior of (3.31)
and hence invalidates GRPA” for large ».

Let us now briefly turn to the LMDA discussed in
Sec. IT E. From (2.51) and (3.15) we find

wp1= (4mwne?/m)'2= plasma frequency.

Mura(ptr;7) =V (p)x(p)+E(p+r;7), (3.32)
where £ is given by (3.17), so that
e(p)>1—-V(p)x(p)/[1—£($;0)]
= conea(p) (3.33)

by (2.52) and (2.54). The dispersion relation now reads
erpa(p) —£(p;0)=0 (3.34)

and clearly yields exchange corrections to the plasmon
frequency for all values of 7,. For small p and taking
G~Gy, we find

E(p;0)=3(p/tr)*+0(p*)

with the approximation py=~w,;. Using this in (3.34),
we get

pot=wp?[ 14 (9/5) (p/ prr)?— (1/2) (p/ pr)*JHO($*),

(3.35)
where

prr=4me*/mpr. (3.36)

Our result agrees closely with that of Singwi ef al.,® who,
instead of the factor % in front of (p/pr)?, find v with
values from 0.4561 to 0.5986 as 7, ranges from 1 to 20.
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3o 33+ 3o
(a)

D= O+ OO+ OO + -
Py Ilo

= O+O--2
{b)

F16. 6. (a) Screening of the exchange graph, Fig. 5(b), by the
addition of an infinite number of ring graphs. (b) Graphical
representation of the polarization functional P,.

Thus, at least in this specific instance, the LMDA
leads to a GRPA dielectric function with reasonable
long-wavelength properties.

D. Second-Stage RPA

To go beyond the HF approximation for Z, one may
consider the second-order graphs shown in Fig. 5. Of
these, Fig. 5(c) represents an electron self-energy cor-
rection to Figs. 5(a) and 5(b) and hence should be
ignored. Of the remaining two graphs, the polarization
graph 5(d) dominates the exchange polarization graph
5(c). In fact, the former is divergent in the limit U—0,
owing to the confluence of two Coulomb potential
factors. The divergence is cured in a well-known
manner by summing an infinite number of graphs so as
to screen out the troublesome Coulomb potentials of
Fig. 5(d). The simplest set of graphs which do the job
are the ring graphs shown in Fig. 6(a). Ignoring the
exchange polarization graph, we take Zga, given by
(3.9), plus the contributions of the ring graphs as our
next approximation for = (denoted by Zgpa):

(3.37)

Zrpa=Zua~+Zrpa’,
Zrea’ (5 | U)=i/ V(pp';59'¢1 U)G(g'; " | U).
»'q/
(3.38)

Here U is the effective potential corresponding to the
wiggly line of Fig. 6(a). It can be written as

V(pp'5 99 | U)=V(p—[s(p+2'—9—¢")
+Pi(p—q; =2 | )V (¢=p")],

where the polarization functional P, sums the ring
graphs of Fig. 6(b) and is given as the solution to

P,(p;q| U)=Io(p; q| U)

+ [ Ma(pi 7| V() Pirig| U),  (340)

(3.39)
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with

Mo(p; 9| U)
=i / G | DG g | D). (341

One can show that the definition (3.40) of P, (with
exact ITy) agrees with (2.37). In the U=0 limit, (3.41)
reduces to

Mo(p) =x(2), (3.42)
where x is given by (2.49). Similarly, (3.40) leads to
Py(p) =I(p)[1—V(p)o(p) ™

=x(p)/erra(p). (343)
Using this formula and taking U'=0 in (3.39), we find
V(pp'5 99" | 0) =Vrea(p—@)o(p+p'—g—¢), (3.44)

where

Veea(p) =V (p)/erpa(p) (3.45)

is the RPA-screened Coulomb potential.
The U=0 limit of (3.37) is now easily found to be

Zaea(p) =i [ Vara()G(p+7).
Comparing this result with the U=0 limit of (3.15),

Zura(p) =1 / V(r)G(p+r),

(3.46)

(3.47)

we see that Zrpa is just the Hartree-Fock expression
for T with the bare Coulomb potential replaced by the
RPA-screened one.

In order to compute the kernel L defined by (2.41)
we need the functional derivative of P,. Writing (3.40)
in an operator form and solving for P, we have

P,;= (I—H()V)—IH().

Making use of a formula analogous to (2.33) and
writing D=4§/8G, we find

:DPtzptH()_—l(ﬁ)Ho)Ho_lPt.
At U=0 this explicitly reads

8P, (p; q , U)
8Gys(r;5 | U) | v=o

= —i0ys(p+s5—q—7) erpa(p) erra(q) !
X[G(r—p)+G(r+9)].

With the help of this result the kernel L is now easily
found from (3.37) and (3.38),

Lrea(p; q| 7)=—2iV(p—q)+iVrra(r)

(3.48)

+2 / Veea(p—s) Vara(g—$)G(s)

XLG(r+s)+G(r—s+p+¢) ] (3.49)
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Comparing this expression with (3.15), we see that the

exchange part of the Coulomb potential is screened in

Lgrpa and that Lgpa has an additional term due to the U

dependence of the screened Coulomb interaction.
From (2.56), (2.57), and (3.49), we obtain

Mzea(p) =V (p)x(p)+trea(p; 0)+ Mrear(p),
where £gpa is given by (3.17) with V—Vgps and

MRPAf(P)=2/ Vrea(7) Vrea(p+7)

XG(Q)G(p+ 9 G(p+g+n)[G(—r)+G(p+7)].

(3.50)
The dielectric function, by (2.54), is then

e(p)=1=V(p)x(p)/[1—Erpa(p; 0) — Mrra-(p) ]

=erea (p), (3.51)

where the prime in 2RPA’ is supposed to remind one
of LMDA used to derive (2.54). We shall not attempt
to explore the properties of erpa/(p), since to do so
would require a considerable amount of numerical
computation in view of the complicated nature of the
functions involved in (3.51). Instead, we immediately
proceed to our next, and last, approximation, making
use of the results obtained in this subsection.

E. High~Low-Density Approximation

In devising the last approximation for = to be con-
sidered in this paper, we shall attempt to take into
account those graphs which can be expected to pro-
vide a reasonable description of the electron gas at
metallic densities. Suppose we are able to identify and
perform the summation of two sets of graphs, one of
which is important at high densities and the other at
low densities. Having obtained a correct description of
the two extremes of the density spectrum, we may hope
that intermediate densities are also reasonably well
taken care of, especially if we can find and include ad-
ditional graphs which “interpolate” between the high-
and the low-density sets of graphs.

In order to explore the above ideas, we must first
identify the important graphs at high and low densities.

@ =rno + ) + D + -

(a) (b) ()

+[:33 + N + EQ + -
(a") (b") (<)

I16. 7. Graphs dominant at low densities for fermion many-
body systems with finite-range interactions. Here (a, b, ¢, ...)
and (a’, ¥, ¢/, ...) are, respectively, the direct and exchange
graphs.
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It is a well-known fact that the ring graphs, of the type
shown in Fig. 6(a), are dominant at high densities.®
On the other hand, for fermion many-body systems
with finite-range interactions, graphs with the fewest
possible hole lines are known to dominate at low den-
sities.” Those graphs are shown in Fig. 7. Now there
is evidence that electron-electron interactions in metals
are quite effectively screened.® The screening of the
Coulomb interaction is also well understood from the
theoretical point of view (RPA), at least for the high-
density electron gas. Thus there is good reason to believe
that effective electron-electron interactions are of finite
range well into the metallic density regime and perhaps
beyond.® As the analysis of Galitskii¥” shows, the graphs
of Fig. 7 are dominant at low densities provided the
ratio of the range of the potential to the mean inter-
particle distance is small (gas approximation). In the
present case, the criterion of dominance is As/7<K1,
where ), is the screening length or the range of the
effective interaction. Now the RPA result for Ay is
prrt= (0.82pr) 7,712, so that Ae/ro~7,"Y2. We see
that indeed As/7<K1 for large 7, corresponding to low
densities. Of course, the above estimates are based on
the RPA expression for As, which is not expected to be
strictly valid as one goes to lower densities. Neverthe-
less, the corrections to these estimates are not expected
to be dramatic, and hence there are some grounds to
believe that the contributions of Fig. 7 may be im-
portant for a reasonably accurate description of the
electron-gas system at the lower densities.

It should be realized that the graphs of Fig. 7 are
more general than the low-density graphs considered
by Galitskii¥ in that each of the latter contain only a
single hole propagator, whereas the former, depending
on the signs of the various energy parameters, contain
both electron and hole propagators in various combina-
tions. Moreover, the graphs of Fig. 7 are to be com-
puted, at least in principle, using the propagators
determined by the U=0 Dyson’s equation, rather than
in terms of Go= K™, as in ordinary perturbation theory.
Thus, in effect, we are summing a much larger class
of ordinary perturbation graphs than does Galitskii.
These extra graphs may be thought of as the “inter-
polating graphs” mentioned at the end of the first
paragraph.

We shall take the wiggly line in Fig. 7 to represent
the RPA-screened U-dependent potential (3.39),
although more complicated expressions for U could be
used to take into account exchange corrections, etc.
The graphs (a) and (b) of Fig. 7 must be modified to
avoid overcounting. The first graph should be replaced
by the Hartree graph (a) of Fig. 5, while the second
should be omitted altogether, since its components are
already included in the expansion of graph (a’) of
Fig. 7. For computational purposes, however, it is con-
venient to add and subtract graph (b) and to rewrite
the graphical expansion of Fig. 7 in the form given in
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Fig. 8(a), where K is a sum of ladder graphs, as shown.
We now see that the first two terms in the expansion of
Z in the present approximation are just those contribu-
ing to Zgpa discussed in the last subsection. Denoting
the approximate = by Zz (Sec. III E), we have

Zg=2Zgrpa+2z’, (3.52)
25" =Zpor+Zrat+ Zke, (3.53)

where the last three terms are the respective contribu-
tions of the RPA-screened polarization, the direct
ladder, and the exchange ladder graphs of Fig. 7. Ex-
plicitly, we have

Zoais(P3 9| U)
=i S (893 00/ | UG (a5 | U),
r'q

(3.54)
where

Spot aar;pp (P25 99" | U)
=ibapdes [ Oprign | V)0 n| U)
X tt[G(r; 7 | U)G(rs; 74| U) ],
Skdaar;pe (P23 99" | U)

=0apbargV(pp"; 99" | U) — Kawr ;08 (p1’5 99" | U),
(3.56)

(3.55)

Skeaar ;88 (PP’ QQ’ I U)
= —08ap0arsV (P95 ¢'q | U)+Kaarps(pp’;¢'q | U).

(3.57)
The kernel K satisfies the integral equation
Kaaipe (025 99" | U) =8apders0(p9"; 99" | U)
+i V(pp'; 17" | U)Gaya(r; s | U)
rrlss!
XGaryor (758" | U) Koo (555 9¢' | U).  (3.58)
Putting U=0 in this equation and writing
Koo (p1'5 99| 0)
=bapdag K (pp'; Q) 0(p+2'—q—¢), (3.59)

we find
K(pp'; 9) =Vrea(p—q)

i f Vaea(P)G(p+7)G(p'—1) K (p+7p'—7; q).

(3.60)

Making the LMDA (see Sec. IT E) in (3.60), we obtain
an approximate expression for K

K(pp"; >[1—{rea(p; p') I Vrea(p—¢q), (3.61)
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@=+--o+[j;-m

o) (-2 9)

(a)

Fic. 8. (a) Graphs contributing to the approximate electron
self-energy functional ¥g. (b) Graphs contributing to the K
functional and the graphical integral equation satisfied by K.

where
trea (5 ) =i [ Vars(NG(p7)G(—n). (3:62)
Next, we take the G derivative of (3.58) and find
Rawarripzsr (000" 99'0")
=[0Kaa;00 (985 09 | U) /3G (¢"; #" | U) Ju=o
=Lawario3p (P2'P"5 99'7")

+i / Vaea (1) G(p47)G(p/—7)

XKaa’a":ﬂB’ﬂ" (P'f“rpl“ 7P”§ qq,q”) ’ (3-63)

where
Loararrspere (0’5 99'"")
=3(p+p'+1p"—9—9—9¢")
X { — 18apbargrbar g Vrea (p—q) Vrea(p'—¢')
X[G(p'"+p—+G(p"+p'—¢) ]

+ BagdarprBar g / Vrea(p—q—5) Vrea(p'—q'+s5)

X[G(p"+p—q—9)+G(p"+p'—q'+s)]
XG(g+5)G(q'—5)K(g+s9'—s; )
+18ap+0gar6arp Vrra (p—q'")
XG(p+p' =g ) K(p"p+1'—¢"; )
+i8apbargr 0prar Vrra (p'— ")
XG(p+p'+¢")K(p+2'—¢"v"; 0} (3.64)
Again making the LMDA, this time in (3.63), we find
Kowaripes (80'0"5 99'7")
> 1—rea(p; p") T Haararr o300 (P90 190°9") -
(3.65)
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Having determined K and its G derivative at U=0,
we can now proceed to compute 2.
Letting U=0 in (3.52) and using (3.61), we get

EE(P)Bi/VRPA(’)
X[1—Vrea(r)x()+rea(p; p+1) IG(p+7),
(3.66)
where )
F=¢(1=H (3.67)

The three terms in (3.66), in the order written, repre-
sent, respectively, the RPA, the RPA-screened polari-
zation (with the correct minus sign), and the exchange
ladder contributions. The direct ladder graphs do not
contribute to Zg, at least in the LMDA for K (pp’; q),
by virtue of Vrpa(0) vanishing.

The computation of the kernel L is quite tedious. We
look at each piece of 2z’ separately, starting with
ki Applying (2.41) to (3.56) and using (3.39),
(3.48), (3.65), (3.64), and (3.61), we find, after some
labor,

Lra(p; q | r)~—2iVrpa(p—q) {rea(p; ¢+7)
i / Txa(pars)G(s), (3.68)

where
JTra(pgrs)=[1—{rea(p; ) I 2i[1—{rea(s—7; g+7) I
X[ Vrpa(r)>+ Vrea(s— p—7)Vrpa(s—g—7)JG(s—7)

+4/[1—§RPA(S—1; q+1) I Vrea()*Vrea(p—g—1)

X[G(r+p—1)+G(r+¢+1) JG(s—1)G(g+1) }.
(3.69)

The function Jx; owes its origin to the G derivative
of K. The exchange ladder graphs, after similar calcula-
tions, lead to

Lgo(p; q | r)~2iVrpa(7) frea(p; ¢+7)
ti [ TxdpgrG(s), (3.70)

with
Ik (pgrs) =[1—Srea(p; s) 7

X {—2itrea(p; 5) Vrea(p—s) Vrrpa(g—s)

X[G(r+5)+G(p+g+7r—s)]

+i[1—¢rea(s—7; ¢4+7) I 'Wrea(r)

X[ Vrea(r+p—s)+ Vrea(r+g—s) JG(s—7)

+2 f[l —¢rea(s—1; ¢+ )T Wrpa(t) Vrea(p—s+17)

X Vrpa(g—s+1) [G(r+s—1t) +G(r+p+g—s+1) ]
XG(s—1)G(g+0)}. (3.71)
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The first term in the curly brackets of (3.71), having
no counterpart in (3.69), can be traced back essentially
to 60/6G, where U is the one in (3.57). This term is
proportional to Vgpa(0) in the case of the direct ladder
graphs and hence vanishes. We emphasize that the
LMDA has been used to obtain the formulas (3.68)
and (3.71) for Lgg and Lg.. This approximation is of
course not necessary to compute Lo, which reads

Loa(#3 91 7) = =iVaes ()X +i [ Jour(pr9)G ),
(3.72)

where
Joo1(pgrs) = 2iVrpa(p—s) Vrea(g—s)
X[14 Vrea(p—s)x(p—5)+ Vrra(g—s)x(g—s) ]
X[G(r+35)+G(r—s+p+q) 1 (3.73)

The first term on the right-hand side of (3.72) is due to
the U dependence of the direct electron propagator in
the screened polarization graph [the third graph in the
expansion of ¥ in Fig. 8(a)]; the last term in (3.72)
comes from the U dependence of the electron loop and
the screened Coulomb interaction of the same graph.

To partially check the algebra, let us expand the
various terms of Ly in powers of the bare Coulomb po-
tential ¥ and compare the results with those of a direct
calculation of Lg to second order in V. The relevant
graphs are (a)—(e) of Fig. 5. By direct calculation, their
contributions to O(V?) are

Lo(p;q|7)==2iV(p—q),
La(p; q| r) =iV (r)%x(7)

+2 [ V(p=5)V(g=5)Gs+NI6O+6p+a—9)]

Ly(p; q| 1) =iV (n),

Lt )= [ (VOV =5t +V(—5+9)]

XG(s) G(r—s)+V(p—s) V(p+r—s)
XG(s) G(r—s+p+q)}.
The different L, are given to O(V?) as
Lrpa=Lot+Ly+Ls,  Lyoa=—La,
Lgg=L,, Lg.=L,.

Expanding (3.49), (3.72), (3.68), and (3.70) in powers
of V, we find expressions for Lgpa and L,, which are
identical to those given above. The results for Lgqs and
Lk, are different in that

2 [ V(p=9)V(g=9G(s+nG(p+—9)

=2 [ V(p=g) V(g=5)G(s+G(p+g—s) (3.79)
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for Lgs= L4 and

— [ V=)V (p+r=5)6(5)Gr—sp+0)
== [V V=G pGr—s+9)

— f V() V()G(s+p)G(r—s+q) (3.75)

for Lg.=L.. The reason for these discrepancies is that
(3.68) and (3.70) are approximate expressions arrived
at by making the LMDA. In fact, the significance of
LMDA can clearly be seen in the approximations as-
sociated with the replacements (3.74) and (3.75).
In (3.74) the replacement V(p—s)—V(p—q) is sug-
gested by the fact that V' (¢—s) is large for s>~g. Simi-
larly, in (3.75) the dominance of V(s) at s=~0 suggests
letting V (r—s)—>V (7).

The complete expression for Lg is the sum of (3.49),
(3.72), (3.68), and (3.70). Given Lg, we may proceed
to calculate the dielectric function ¢ in the now familiar
way using the LMDA. We shall refer to e so obtained
as the dielectric function in the high-low-density ap-
proximation egrpa. We shall not bother to write down
enLpa explicitly, since its form is quite complicated. It
seems that further approximations must be made to the
kernel Lg before a numerical exploration of the di-
electric function can profitably be undertaken. We hope
to investigate these matters in the future.

To conclude this section, we shall briefly discuss the
relation of our scheme of treating the metallic density
regime of the electron gas and contrast it with the inter-
polation procedures used by various authors. First of
all, it must be realized that our scheme is much more
comprehensive in that we have developed a formalism
for calculating the various full Green’s functions,
although in this paper the emphasis has been on the
dielectric function. In contrast, Wigner® and others®
were mainly interested in computing quantities such as
the correlation energy, specific heat, spin susceptibility,
etc. In such a case, it is by far simpler to use ad koc
interpolation procedures for these quantities or for the
dielectric function (or some function related to it) from
which the latter may be calculated. These interpolation
procedures are clearly insufficient for a deeper under-
standing of the physics of the electron gas. In particular,
they are totally inadequate when one wishes to study
the behavior of the electron gas as a function of the elec-
tron density. Inasmuch as the methods of this section
for calculating the dielectric function go far beyond the
RPA, it is expected that they may enable one to pene-
trate deeper into the low-density regime than has
hitherto been possible. Whether or not these methods
will suffice to treat the important question of phase
transitions is at present unclear and is being investi-
gated.
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IV. DISCUSSION

In this paper we have attempted to develop practical
approximation schemes for calculating the various elec-
tron Green’s functions. Our approach has been general,
although in applications we have concentrated on com-
puting the longitudinal dielectric function e from which
most of the physically interesting quantities may be
obtained. We have determined e in a number of ap-
proximations by selecting and summing successively
larger sets of graphs for the self-energy functional 2. In
obtaining closed-form solutions for ¢, an essential use
was made of the LMDA which allowed us to avoid solv-
ing linear integral equations for the various contracted
four-point Green’s functions. The domain of validity
of LMDA is at present not clear and remains to be ex-
plored. Some optimism for LMDA may be generated
by the observation that egrpas, whose derivation re-
quired making the LMDA, led to a plasmon dispersion
relation in good agreement with that obtained by
Singwi et al.?

It is difficult to judge the quality of the various ap-
proximate expressions for e obtained in this paper with-
out making some numerical calculations. These we hope
to undertake in a sequel to this paper, at least for the
simpler forms of ¢; an exploration of emrpa should
perhaps be deferred until the validity of LMDA is
understood in simpler contexts. Although the expres-
sions obtained for the various approximate €’s are rather
complicated, especially for enrpa, nevertheless they are
in the form of quadratures and should therefore be
susceptible to direct numerical analysis, perhaps after
some further simplifying approximations.

The problem of self-consistency merits some discus-
sion. In this paper self-consistency was achieved by
requiring that the self-energy functional Z, needed to
obtain the exact single-particle propagator G, be com-
puted by perturbation theory in terms of G itself. The
result of this requirement was a self-consistent non-
linear Dyson equation for G. More sophisticated cal-
culational schemes come to mind in which higher-order
Green’s functions or their contractions are also treated
self-consistently. For example, we may imagine the
following procedure. All bare Coulomb interactions are
replaced by screened ones according to the prescription
V—V="V/e, where € is the exact dielectric function.
Taking the usual care to avoid overcounting of graphs,
one computes an approximate Z in terms of Vs, and
the exact propagator G. Then e is calculated in the
manner explained earlier in this paper. As a result, one
obtains a self-consistent set of equations for G and e.
It is clear that in this scheme the electron screening
effects are taken into account more satisfactorily (self-
consistently) than before. The price one pays for this
is a considerably more complicated set of equations
one has to solve.

Although in this paper we have concentrated on the
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case of an electron gas without externally imposed
fields, it is quite straightforward to account for these
fields in our formalism. All one has to do is to take
everywhere the limit U—Uey instead of U—0. The
problem of solving equations for the various Green’s
functions is, of course, by far more difficult when

Uext# 0-
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APPENDIX

We first wish to explore the possibility of self-con-
sistently solving the U=0 Dyson’s equation in the
HFA,

G =K(p)=i [ VG(ptn).  (314)

Then we shall make a few comments regarding the

general case.
Let r—r—p in (3.14) above and put

#(p)=i [ Vir—p)G().

Since V is independent of (r—p)o, 66(p) can depend
only on | p| if we also take into account the rotational

symmetry. Hence, using (2.18), we have

G(p) =[potu—81(p)+iped ],

81(p) =8o(p)+08(p) (A3)

is the quasiparticle energy. Substituting (A2) into
(A1), remembering to restore the factor exp(iron) in the
integrand, and performing the 7, integration, we find

86(p) =—J L'/ (2m)*TV (r—p)n(r),  (A4)
n(r) =0[u—&(r) ]

is the electron distribution function. Performing the
angular integrations in (A4) and substituting the result
into (A3), we find the following equation for &:

_r_e ptr
81(p)—2m WP/O drrln —r

The appearance of &; in the argument of a step function
makes (A6) rather formidable. Actually, the equation
can be solved fairly easily, at least for high densities,
as we shall now show.

Let us introduce

(A1)

(A2)
where

where
(AS)

0(u—&1(r)). (A6)

pr= (3n?n)13, (A7)
the free-electron Fermi momentum, and write
x=p/pr,  y=1/pr,
N(x) =2mE1(prx) /pr®,  ho=2mu/pr’. (AS8)
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Then (3. 18) can be put into the dimensionless form

M) =ar— L / dyyin| T2 000-A0)), (A9
where
k= (2/7) (4/97)i~0.332. (A10)
The distribution function
v(x) =n(pox)
=0(\o—A(x)) (Al11)

evidently depends on the shape of A(x). If \(x) is
monotonically increasing, as in the free-electron case,
then »(x) will be unity for 0<x<xy and zero for x> xo,
where A(xo) =MNo. If, however, A(x) is not monotonic
but does exhibit local minima and maxima, then »(x)
may be nonzero for a number of disjoint intervals on
the real « axis, as illustrated, for a typical A\(%), in Fig. 9.
For large x, A(x) must still increase monotonically for
otherwise the integral in (A9) would not exist. In fact,
it is easy to see that A(x)~ax? for x—o. For small
enough x, the integral in (A9) starts out as a positive
constant times x, regardless of the shape of A(y) in
8(No—A\(y)). It follows that A(x) <O for sufficiently
low x and that electron states close to p=0 are neces-
sarily populated at all densities, even though the in-
terval from p=0 to the nearest cutoff momentum
(at which » becomes zero) may be arbitrarily small. It
should be clear that whatever be the shape of A\ (%),
v(x) may be specified, for a given fixed value of A, by
the numbers a;i=a,(N\) and B;=6;:(N\o), =1, ..., N,
where a; and B;, respectively, indicate the disconti-
nuities0—1and 1—0 in »(x). These numbers are subject
to the inequalities
O=a1<Pr1<ae<Be<l

<an<pBy<wo. (A12)

With the above specification of »(x) we can do the
integral in (A9) and find

Ax) =a2—kr F (), (A13)
where
N
F(x)= Elff(x, Bi) —f(%, @) ] (A14)
/
A(x)

N 0 l/'\'\/‘/\/

/ v=1

F16. 9. Plot of a hypothetical function A(x) showing regions of
zero and unity values of the distribution function »(%).

v=0v=1 v=0 x
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and
f(x, @)= a+(1/22)(e*—2?) In| (x+a)/(x—a) | (A1S5)
The function f has the special values

f(x,0)=0,  f(0, a) =2,

fle, ) =a,  f(,a)=0, (A16)
and the monotonic property

f(x8)2f(x,a) for BZa. (A17)

In view of (A12), F(x)>0 for all finite x. However,
neither F(x) nor M(«x) is monotonic, in contrast to f.
To see this, we examine

N 2 2 .
N(x) =2x+«xrs <w In s
=1\ 2a? x—B:
_ e oitat leta ) (A18)
x 2x? r—a;

Consider an x such that a;<x<f; for some arbitrary
but fixed value of ¢>1. It is clear that M (x)—— as
x—a; and N (x)——+ o« as x—B;. Thus A’ vanishes some-
where in each interval (ay, 8;), 4>1; in the interval
(a;=0, B;) there is easily seen to be no zero of \'. A
similar reasoning establishes zeros of A’ in the intervals
(Bi, aiy1) for i=1, ..., N—1. The conclusion is that
A(x) has 2(N—1) local extrema, N—1 of them maxima
and N—1 minima by virtue of the fact that A<0 for
#—0 and A >4 as x—-+ ». Evidently, A(x) will be
a solution of (A9) if the equation Ao=A(x), with A(x)
computed by (A13), has precisely 2N —1 zeros located
at Bi, as, B, ..., aw, By. Thus the a; and B; are subject
to a self-consistency condition arising from matching
the input with the output for given values of A and 7.
We shall examine this self-consistency condition only
for N=1, leaving open the question for N> 1.
The normalization condition

n=2 [ [&*p/(2m)*In(p) (A19)
can easily be shown to be equivalent to
Z (BS—ai). (A20)

i=1

Consider now the N=1 case for which only 8i=8>0.
From (A20) we immediately conclude that 3=1. Equa-
tion (A13) then reads

Max)=a—«kr, f(x, 1). (A21)
The self-consistency condition is obviously
M=A\(B), (A22)

requiring that the jump in the calculated A(x) should
occur precisely at x=, as initially assumed. But 8=1,
so that using (A21) and f(1, 1) =1, we get

No=1— k7.

(A23)
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If 7, is small, as in the high-density case, then Ag>~1 and
hence, by (A8), we find

pre (2mps) 2,

the well-known expression for the free-electron Fermi
momentum in terms of the chemical potential u. In the
general case, the connection between pr and u is given

by
(A24)

pr=(1—xr:) =" (2mu) .
Obviously, the solution breaks down when 7,>1/x>3,
leading to a nonpositive chemical potential, according
to (A23). Physically this means that for densities such
that 7, >3 the N=1 solution is unstable and the elec-
tron gas chooses a different solution, one with N>1.
We leave open the interesting question whether self-
consistent solutions can be found for N> 1.
In summary, we have shown the existence of a self-
consistent solution to (3.14) valid up tor>3. For larger
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7, this solution implies a negative chemical potential
u=0Ey(N)/AdN, where Eo(N) is the ground-state
energy, and V is the number of electrons in the system.
But 4<0 means that adding a particle to the system
lowers its energy or that the solution corresponds to an
unstable ‘“‘ground” state. For 7,>3, one must then
search for solutions corresponding to a true ground state
such that x> 0; this we have not done. It is interesting
to note that the simple relation pr= (2mpu)!/? is valid
only in the high-density limit.

In the general case, the Coulomb potential in (3.14)
is replaced by a frequency- and G-dependent effective
potential, so that instead of (A6) one is faced with a
much more difficult nonlinear equation. Yet the quali-
tative features of the Hartree-Fock case are expected
to persist even in the more accurate versions of the
Dyson equation. In particular, the likely existence of
several different solutions, valid for different ranges of
densities, is presumably a general feature and a con-
sequence of the nonlinearity of the Dyson equation.
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